Ecuación

|

Una ecuación es una igualdad entre dos expresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, y desconocidos o incógnitas, relacionados mediante operaciones matemáticas. Los valores conocidos pueden ser números, coeficientes o constantes; y tambiénvariables cuya magnitud se haya establecido como resultado de otras operaciones. Las incógnitas, representadas generalmente por letras, constituyen los valores que se pretende hallar. Por ejemplo, en la ecuación:

\overbrace{3x-1}^{\text{primer miembro}}=\overbrace{9+x}^{\text{segundo miembro}}

La letra x representa la incógnita, mientras que el coeficiente 3 y los números 1 y 9 son constantes conocidas. Resolver una ecuación es encontrar los valores de las incógnitas que la satisfacen, y se llama solución de una ecuación a cualquier valor de dichas variables que cumpla la igualdad planteada. Para el caso dado, la solución es:

x = 5 \,

Todo problema matemático puede expresarse en forma de una o más ecuaciones. Sin embargo no todas las ecuaciones tienen solución, ya que es posible que no exista ningún valor de la incógnita que haga cierta una dada igualdad. También puede ocurrir que haya varios o incluso infinitos conjuntos de valores que la satisfagan.

En el caso que todo valor posible de la incógnita haga cumplir la igualdad, la expresión se llamaidentidad. Si en lugar de una igualdad se trata de una desigualdad entre dos expresiones matemáticas, se denominará inecuación. Una ecuación funcional es aquella en la que algunas de las constantes y variables que intervienen no son realmente números sino funciones; y si en la ecuación aparece algúnoperador diferencial se llama ecuación diferencial.

Ecuación de primer grado

Se dice que una ecuación es de primer grado cuando la variable (x) no está elevada a ninguna potencia, es decir, su exponente es 1.

Una ecuación de primer grado tiene la forma canónica:

ax+b=0\,

con a diferente de cero.

Su solución es la más sencilla:  \, x = - b /a

Resolución de ecuaciones de primer grado

Dada la ecuación:

9x-9+108x-6x-92=16x+28+396 \,

1- Transposición:

Primero, se agrupan los monomios que poseen la variable x en uno de los miembros de la ecuación, normalmente, en el izquierdo. Podemos hacerlo teniendo en cuenta que:

Si sumamos (o restamos) un mismo monomio (o número) en los dos términos, la igualdad no varía.

En términos coloquiales, se suele decir: si el número está sumando (Ej: +9), pasa al otro lado restando(-9); y si el número está restando (Ej: -6), pasa al otro lado sumando (+6)

La ecuación quedará así:

9x+108x-6x-16x=28+396+9+92 \,

Como puede verse, todos los términos que poseen la variable x han quedado en el primer miembro (a la izquierda del signo igual), y todos los números enteros han quedado en el segundo miembro (a la derecha).

2- Simplificación:

El siguiente paso es convertir la ecuación en otra equivalente más simple y corta.

Realizamos la simplificación del primer miembro:  \, 9x+108x-6x-16x = (9+108-6-16)x = 95x

Y simplificamos el segundo miembro:  \, 28+396+9+92 = 525

La ecuación simplificada será:

 95x = 525 \,

3- Despejar:

Ahora es cuando llegamos al objetivo final: que la variable quede en un término de la igualdad.

Si multiplicamos por un mismo monomio (o número) en los dos términos, la igualdad no varía.

En términos coloquiales: si el número está multiplicando (Ej: ·2), pasa al otro lado dividiendo (en forma fraccionaria) (n/2) (el número pasará sin cambiar el signo).

Si dividimos entre un mismo monomio en los dos términos, la igualdad no varía.

En términos coloquiales: si el número está dividiendo (expresado en forma fraccionaria) (Ej: n/5), pasa al otro lado multiplicando (·5) (el número pasará sin cambiar el signo).

Coloquialmente: en la ecuación, debemos pasar el número 95 al otro lado y, como está multiplicando, pasa dividiendo (sin cambiar de signo):

 x=525/95 \,

Se comprueba que el ejercicio está teóricamente resuelto, ya que tenemos una igualdad en la que xequivale al número 525/95. Sin embargo, debemos simplificar.

Resolvemos la fracción (numerador dividido entre denominador) en caso de que el resultado diera exacto; si diera decimal, simplificamos la fracción y ése es el resultado.

En la ecuación, vemos que el resultado de la fracción es decimal (525:95 = 5,5263157894737)

por tanto, simplificando, la solución es:

 x=105/19 \,

Resolución de ecuaciones de primer grado: problema

Pongamos el siguiente problema: número de canicas que tengo más tres es igual al doble de las canicas que tengo menos dos. ¿Cuántas canicas tengo? El primer paso para resolver este problema es expresar el enunciado como una expresión algebraica:

x+3=2x-2 \,

Se podría leer así: X número de canicas + 3 canicas es igual a 2 por el número x de canicas menos 2 canicas.

El enunciado está expresado, pero no podemos ver claramente cuál es el valor de x; para ello se sigue este procedimiento:

x+3=2x-2 \,

Primero se pasan todos los términos que dependen de x al primer miembro y los términos independientes al segundo. Para ello tenemos en cuenta que cualquier término que se cambia de miembro cambia también de signo. Así obtenemos:

x-2x=-2-3 \,

Que, simplificado, resulta:

-x=-5 \,

Esta expresión nos lleva a una regla muy importante del álgebra, que dice que si modificamos igualmente ambos miembros de una ecuación, el resultado es el mismo. Esto significa que podemos sumar, restar, multiplicar, dividir, elevar y radicar los dos miembros de la ecuación por el mismo número, sin que ésta sufra cambios. En este caso, si multiplicamos ambos miembros por -1 obtendremos:

x=5 \,

El problema está resuelto.

Ecuación de segundo grado

|

Una ecuación de segundo grado o ecuación cuadrática es una ecuación polinómica donde el mayor exponente es igual a dos. Normalmente, la expresión se refiere al caso en que sólo aparece una incógnita y que se expresa en la forma canónica:

donde a es el coeficiente cuadrático o de segundo grado y es siempre distinto de 0, b el coeficiente lineal o de primer grado y c es el término independiente.
Expresada del modo más general, una ecuación cuadrática en es de la forma:

con n un número natural y a distinto de cero. El caso particular de esta ecuación donde n = 2 se conoce como ecuación bicuadrática.
La ecuación cuadrática es de gran importancia en matemáticas aplicadas, física e ingeniería, puesto que se aplica muy frecuentemente en la resolución de problemas.

Historia

La ecuación de segundo grado y su solución tiene origen antiguo. Se conocieron algoritmos para resolverla en Babilonia y Egipto.

En Grecia fue desarrollada por el matemático Diofanto de Alejandría.

La solución de las ecuaciones de segundo grado fue introducida en Europa por el matemático judeoespañol Abraham bar Hiyya, en su Liber embadorum.

Clasificación

La ecuación de segundo grado se clasifica de la siguiente manera:

1.- Completa: Tiene la forma canónica:

 ax^2 + bx + c = 0 \,

donde los tres coeficientes a, b y c son distintos de cero.

Esta ecuación admite tres posibilidades para las soluciones: dos números reales y diferentes, dos números reales e iguales (un número real doble), o dos números complejos conjugados, dependiendo del valor que tome el discriminante

 \Delta = b^2 - 4ac \,

ya sea positivo, cero o negativo, respectivamente.

Se resuelven por factorización, por el método de completar el cuadrado o por fórmula general. La fórmula general se deduce más adelante.

2.- Incompleta pura: Es de la forma:

 ax^2 + c = 0 \,

donde los valores de a y de c son distintos de cero. Se resuelve despejando x con operaciones inversas y su solución son dos raíces reales que difieren en el signo si los valores de a y c tienen signo contrario o bien dos números imaginarios puros que difieren en el signo si los valores de a y c tienen el mismo signo. Una ecuación cuadrática incompleta de la forma:

 ax^2 = 0 \,

con a distinto de cero, muy rara vez aparece en la práctica y su única solución de multiplicidad dos es, por supuesto, x = 0

3.- Incompleta mixta: Es de la forma:

 ax^2 + bx = 0 \,

donde los valores de a y de b son distintos de cero. Se resuelve por factorización de x y siempre tiene la solución trivial x1 = 0. No tiene solución en números complejos.

Solución general de la ecuación de segundo grado

La ecuación completa de segundo grado tiene siempre dos soluciones, no necesariamente distintas, llamadas raíces, que pueden ser reales o complejas, dadas por la fórmula general:

x = \frac{-b \pm \sqrt {b^2-4ac}}{2a} ,

donde el símbolo "±" indica que los dos valores

x_1 = \frac{-b + \sqrt {b^2-4ac}}{2a}y\ x_2 = \frac{-b - \sqrt {b^2-4ac}}{2a}

son soluciones. Es interesante observar que esta fórmula tiene las seis operaciones racionales del álgebra elemental.

Si observamos el discriminante (la expresión dentro de la raíz cuadrada):

b^2 - 4ac \,

podremos saber el número y naturaleza de las soluciones:

  1. Dos soluciones reales y diferentes si el discriminante es positivo (la parábola cruza dos veces el eje x);
  2. Una solución real doble, dicho de otro modo, de multiplicidad dos, si el discriminante es cero (la parábola sólo toca en un punto al eje x);
  3. Dos números complejos conjugados si el discriminante es negativo (la parábola y el eje x no se intersectan).

Deducción de la fórmula general

Relacionando la ecuación de segundo grado con un polinomio de segundo grado y las raíces del mismo (a su vez raíces de una función cuadrática), podemos resolver la ecuación algebraicamente y obtener la fórmula de dicha ecuación.

Sea dada la ecuación:

 ax^2 + bx + c = 0 \,

donde  a \neq 0 para garantizar que sea realmente una ecuación polinómica de segundo grado.

Como a es distinto de cero, podemos dividir entre a cada término de la ecuación:

 x^2 + \frac{b}{a}x + \frac{c}{a} = 0

Restamos el valor del término independiente en ambos miembros de la igualdad:

 x^2 + \frac{b}{a}x = - \frac{c}{a}

Para completar el trinomio cuadrado perfecto (TCP), o más brevemente, para completar el cuadrado en el miembro izquierdo, se suma el cuadrado de la mitad del coeficiente lineal, por lo que sumamos  \left(\frac{b}{2a} \right)^2 en ambos miembros de la ecuación:

 x^2 + \frac{b}{a}x + \left(\frac{b}{2a} \right)^2 = \left(\frac{b}{2a} \right)^2 - \frac{c}{a}

Factorizamos el TCP del lado izquierdo y hacemos la operación indicada del derecho:

 \left(x + \frac{b}{2a} \right)^2 = \frac{b^2}{4a^2} - \frac{c}{a}

Hacemos la operación con fracciones en el miembro derecho:

 \left(x + \frac{b}{2a} \right )^2 = \frac{b^2-4ac}{4a^2}

Extraemos raiz cuadrada en ambos miembros:

 x + \frac{b}{2a} = \pm \sqrt { \frac{b^2-4ac}{4a^2} }

Separamos las raíces de la fracción del lado derecho:

 x + \frac{b}{2a} = \pm \frac { \sqrt{b^2 - 4ac} }{ \sqrt{(2a)^2} }

Simplificamos el radical del denominador del miembro derecho:

 x + \frac{b}{2a} = \pm \frac { \sqrt{b^2 - 4ac} }{ 2a }

Despejamos la incógnita que buscamos:

 x = - \frac{b}{2a} \pm \frac { \sqrt{b^2 - 4ac} }{ 2a }

Combinamos las fracciones con el mismo denominador del lado derecho y obtenemos la fórmula general:

 x = \frac{-b \pm \sqrt{b^2 - 4ac} }{ 2a }

Es trivial el orden en que se toman los valores de x; algunos autores prefieren colocar en primer término el valor menor de x, es decir, aquél en el cual va el signo negativo antes del radical. Antes de aplicar indiscriminadamente la fórmula general en la solución de ecuaciones de segundo grado particulares, se sugiere resolver cada ecuación empleando todos los pasos de la deducción cada vez para tener dominio del método de completar el cuadrado.

Teorema de Cardano-Viète

Para toda ecuación cuadrática de la forma:

 ax^2 + bx + c = 0 \,

de raíces x_1 , x_2 \, se cumplen los siguientes dos aspectos:

Suma de raíces
 x_1 + x_2 = - \frac{ b }{ a } \,

Demostración:

  • Partiendo del uso de la fórmula resolvente
 x_1 + x_2 = \frac{-b + \sqrt{b^2 - 4ac} }{ 2a } + \frac{-b - \sqrt{b^2 - 4ac} }{ 2a } \,
  • Sumamos los numeradores, por ello las raíces desaparecen al ser opuestas
 x_1 + x_2 = \frac{-2 b }{ 2a } \,
  • Simplificando nos queda
 x_1 + x_2 = - \frac{ b }{ a } \,
Producto de raíces
 x_1 \cdot  x_2 = \frac{c}{a} \,

Demostración:

  • Partiendo del uso de la fórmula resolvente
 x_1 \cdot  x_2 = \frac{-b + \sqrt{b^2 - 4ac} }{ 2a } \cdot  \frac{-b - \sqrt{b^2 - 4ac} }{ 2a } \,
 x_1 \cdot  x_2 = \frac{(-b)^2 - (\sqrt{b^2 - 4ac})^2 }{ (2 a)^2 } \,
  • Resolviendo las potencias nos queda:
 x_1 \cdot  x_2 = \frac{b^2 - (b^2 - 4ac) }{ 4 a^2 } \,
  • Distribuyo el menos y sumo en el numerador
 x_1 \cdot  x_2 = \frac{ 4ac }{ 4 a^2 } \,
  • Simplificando nos queda:
 x_1 \cdot  x_2 = \frac{ c }{ a } \,

Además se puede hacer uso de la identidad de Legendre para obtener la diferencia de raíces.

 (x_1+x_2)^2-(x_1-x_2)^2=4(x_1 \cdot x_2) \,

Solución mediante cambio de variable

Una manera sencilla de resolver una ecuación de segundo grado (y también de tercer y cuarto grado) es aplicar un cambio de variable. En el caso de la ecuación de segundo grado del tipo a x^2 + b x + c = 0 \,, el cambio de variable necesario es del tipo x = t + n \,.

Aplicando el cambio de variable anterior, obtenemos la ecuación a (t+n)^2 + b (t+n) +c = 0 \,

y desarrollándola queda a t^2 + (2 a n + b) t + a n^2 + b n +c = 0 \, (1).

Ahora debemos reducir la ecuación obtenida a un caso conocido que sepamos resolver. Es evidente que las ecuaciones de segundo grado del tipo x^2 = K \, se resuelven de forma directa extrayendo la raíz cuadrada de ambos términos y cuya solución general es del tipo x = \pm \sqrt {K} \,.

Para poder transformar nuestra ecuación (1) en una ecuación con el término de primer grado igual a cero, debemos forzar a que 2 a n + b = 0 \,, es decir n = -\frac {b} {2 a} \,

Sustituyendo en (1) queda a t^2 -\frac {b^2} {4 a} + c =0 \,. (2)

Esta nueva ecuación está en la forma t^2 = K \, que era lo que pretendíamos lograr con el cambio de variable, y que, como ya se ha dicho, tiene una solución inmediata del tipo t = \pm \sqrt {K} \,

Por tanto, despejando la variable t \, en la ecuación (2), queda t = \pm \frac { \sqrt {b^2 - 4 a c}} {2 a}

Dado que x = t + n \,, y que n = -\frac {b} {2 a} \,, obtenemos la solución de la ecuación original con variable en x \,, que es

x = -\frac {b} {2 a} \ \pm \frac {\sqrt {b^2 - 4 a c}} {2 a}

El artificio de esta demostración, consiste, por tanto, en aplicar un cambio de variable que reduce la ecuación de segundo grado general a otra ecuación más sencilla y de solución inmediata.